If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2+15t-64=0
a = 4.9; b = 15; c = -64;
Δ = b2-4ac
Δ = 152-4·4.9·(-64)
Δ = 1479.4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-\sqrt{1479.4}}{2*4.9}=\frac{-15-\sqrt{1479.4}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+\sqrt{1479.4}}{2*4.9}=\frac{-15+\sqrt{1479.4}}{9.8} $
| 2(x+1.25)=4.5 | | -6x-8(-3x-17)=10 | | 7(4w+2)/2=1 | | y=2(7)-16 | | 3y-12y+5y=0 | | 2x-16=3x-23 | | 0.3x+0.6=2.1 | | 15x-5(4x)=-5 | | 3=5-85+9y | | 4x-6+2x+2=12 | | 0.5(17x-2)=9x+7 | | .x^2–3x+8=0 | | 7/8=q/16 | | 6x-11=3x-4 | | y=(7)-10 | | 4(-2x+6)=20 | | 5x+x^2=30 | | x-10=3x-24 | | -6-w=4 | | -3x+9=-36 | | 6(x-4)=4x+4 | | (5x-4)=94 | | 0.5x-15=1 | | 5y+9=4(y-3)+7 | | -10(s+3)=-103 | | 12+6x=64 | | 12+6x=61 | | -3x+53=x=25 | | v=(9v-18)^1/2 | | 15x+25=75 | | -3+4x-3=2(2x-3) | | 200x=1,000=250x |